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We study vibrational thermodynamic stability of small-world oscillator networks by relating the average
mean-square displacement S of oscillators to the eigenvalue spectrum of the Laplacian matrix of networks. We
show that the cross-links suppress S effectively and there exist two phases on the small-world networks: �1� an
unstable phase: when p�1 /N, S�N; �2� a stable phase: when p�1 /N, S� p−1, i.e., S /N�Ecr

−1. Here, p is the
parameter of small-world, N is the number of oscillators, and Ecr= pN is the number of cross-links. The results
are exemplified by various real protein structures that follow the same scaling behavior S /N�Ecr

−1 of the stable
phase. We also show that it is the “small-world” property that plays the key role in the thermodynamic stability
and is responsible for the universal scaling S /N�Ecr

−1, regardless of the model details.
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Vibrational dynamics has been widely used to study ther-
modynamic properties of various structures in solid-state
physics and/or other disciplines �1�. Since the structure is
considered as a primary factor responsible for physical prop-
erties, keeping the underlying structure thermally stable is of
primary importance for systems to function properly. For ex-
ample, proteins, comprising of an extremely heterogeneous
class of biological macromolecules, must be stable enough
against thermal fluctuations and/or external perturbations so
as to maintain their native structures and to function cor-
rectly �2,3�. Therefore, a natural and important question is
often asked: what is the structure effect on thermodynamic
stability? In this paper, we study the stability of small-world
structures �4�, which is then exemplified by proteins.

The dynamics of N coupled oscillators on the network in
contact with the external heat reservoir can be expressed as

Mq̈ = − �Lq − �q̇ + � , �1�

where q= �q1 ,q2 , . . . ,qN�T denotes the oscillator’s displace-
ments from the equilibrium positions. Mij =mi�ij is the mass
matrix, where mi denotes the mass of the ith oscillator. � is
the spring constant. Lij =�ij�mAim−Aij is the Laplacian ma-
trix and Aij is the adjacency matrix of the network, where
Aij =1 if i and j are connected, and Aij =0 otherwise. �ij
=�i�ij is the dissipation matrix where �i is the dissipation
coefficient of the ith oscillator influenced by the heat reser-
voir. Vector �= ��1 ,�2 , . . . ,�N�T denotes the thermal fluctua-
tion with zero mean and variance ��i�t�� j�t���=2kBT�ij��t
− t��, which is the usual fluctuation-dissipation relation.

The harmonic potential we adopt seems very simple but
can capture the main features of the system. For example,
Tirion �5� demonstrates that a single-parameter harmonic po-
tential can reproduce vibrational properties of the real mac-
romolecular system very well. Thereafter, the Gaussian net-
work model �GNM� �6� has been widely used in protein

research and yields results in good agreement with experi-
ments. In the GNM model, the interactions are considered as
homogeneous harmonic springs, which is in analogy with the
elasticity theory of random polymer networks �7,8�.

The correlation matrix of oscillator displacements at the
steady state for Eq. �1� can be easily obtained �see Appen-
dix�:

Clk = �qlqk� =
kBT

	
	

−


+


d��G−1�i���G−1�− i���lk, �2�

where matrix G��i��= ��i��2M + ��i���+�L. Since
G�i��−G�−i��=2i�� and G�0�=�L, one can eliminate � in
the above integral and obtain

C = −
kBT

	i
	

−


+
 d�

�
G−1�i�� =

kBT

�
L†, �3�

where L† denotes the pseudoinverse of L. It excludes zero
mode which corresponds to the translational invariance of
the system, and is the inverse of L in the subspace orthogonal
to the zero mode:

Lij
† = �


=1

N−1
1

�


�
i�
j , �4�

where �
 are the nonzero eigenvalues, and �
j denote the
corresponding normalized eigenvectors of L. Therefore, we
can obtain the average mean-square displacement straightfor-
wardly:
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1

N
�
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kBT
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�

=1
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1

�


. �5�

This formula relates the dynamic vibration property S to the
static structure property—the eigenvalue spectrum of La-
placian matrix L. When the average mean-square displace-
ment S reaches the square of the typical spacing between
oscillators, the structure encounters large vibrations and be-
comes unstable. Thus, small value of S means stable while
large value means unstable. It is clear that S has a trivial
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dependence on T and � so that lower temperature or larger
spring constant indicates more thermal stability. Therefore,
to study the structure effect on S, we take kBT /�=1 in the
following, without loss of generality.

Based on Eqs. �3� and �5�, we can use exact numerical
diagonalizations of the Laplacian matrix L to study the struc-
ture effect on thermodynamic stability. In fact, the stability
can be also studied by perturbation analysis, through which
we find that the cross-links can suppress the thermodynamic
instability, i.e., decrease S effectively. After structure
changes, the new Laplacian matrix is constructed as L�=L
−�, where � denotes the perturbation. The new correlation
matrix C� can be written as

C� = �I − C��−1C = C + C�C + C�C�C + ¯ . �6�

This is a standard algebraic treatment of matrix perturbation,
which can be simply regarded as Taylor series. In fact, it is
similar to the Dyson equation in Feynman-Dyson perturba-
tion theory �9�. For the case of adding a link between nodes
i and j, the perturbation matrix � can be expressed as

�mn = �mi�nj + �mj�ni − �mi�ni − �mj�nj . �7�

Substituting the expression of � into C�, one obtains

Cmn� = Cmn −
�Cmi − Cmj��Cin − Cjn�

1 + Rij
, �8�

where Rij =Cii+Cjj −2Cij =�
=1
N−1��
i−�
j�2 /�
. Therefore,

the new average mean-square displacement is

S� =
1

N
tr C� = S −

�k=1

N
�Cik − Cjk�2

N�1 + Rij�

= S −
1

N�1 + Rij�
�
k=1

N
��
i − �
j�2

�

2 . �9�

The second term in Eq. �9� is positive so that the value of
new S� is always smaller than S. In other words, the cross-
links always decrease S so as to increase the thermodynamic
stability of the system. A specific case is studied and illus-
trated in Fig. 1.

In the following study, we choose a typical model to con-
struct the small-world structure �10�. We first consider N
oscillators �which might be an atom, a molecule, or other
module structure, depending on the system studied� on a
one-dimensional �1D� ring chain, i.e., with periodic bound-
ary conditions. Each oscillator is connected to its nearest
neighbors. Then, we add a cross-link to each oscillator with
probability p, which connects to another non-neighboring os-
cillator randomly. Thus, Ecr= pN is the number of cross-
links. When p=0, the structure reduces to the 1D ring chain.
In all cases studied below, each data point is obtained by
averaging over 50 different network configurations for a
given p and N.

Figure 2�a� illustrates S versus the system size N for dif-
ferent values of p in double-logarithmic scale. The p=0 case,
corresponding to the 1D ring structure, shows the power-law
divergence, S�N. It indicates that no thermodynamically
stable solid exists at finite temperature in 1D. Indeed, when
the average mean-square displacement S exceeds the square
of the typical spacing between oscillators, the structure be-
haves like a liquid rather than a solid, and the crystalline
order makes no sense anymore. This behavior is also re-
ported in �11,12�. For the case of p�0, even of small value,

FIG. 1. �Color online� �a1� The numerical result of the correlation of pairwise oscillator displacements on a ring chain N=64. �a2� The
numerical result of the correlation for adding link �11, 24� on �a1�. �a3� is the numerical calculation of correlation for adding link �21, 40�
on �a2�. �a4� is the correlation for adding link �33, 64� on �a3�. �b2�, �b3�, and �b4� are the perturbed calculation results using Eq. �8�,
corresponding to their counterparts in the upper panel. �b1� shows the decreasing of S with adding cross-links. The red �shading� ones are
calculated directly from numerical diagonalization and the black ones are the perturbed calculation using Eq. �8�. All the results validate our
analytic results.
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as N increases, S is saturated to a finite value rapidly. More-
over, from Fig. 2�b�, we can see that the larger the p, the
smaller the S and in the large N limit, a scaling S� p−1

emerges. All the above results indicate that the cross-links
suppress the average mean-square displacement S effectively
and make it convergent in the thermodynamic limit.

To eliminate the finite-size effect, all the data from Fig. 2
�13� are rescaled and the results are illustrated in Fig. 3. It is
found that all data points collapse into one single line very
well and two distinct phases emerge. For p�1 /N, there is a

horizontal regime, S /N�const. It indicates an unstable
phase: when the number of cross-links is smaller than one, S
diverges with N. For p�1 /N, there is a regime with slope
−1, S /N�Ecr

−1= �pN�−1, which indicates a convergent stable
phase. In other words, when the number of cross-links is
much larger than one, S approaches a finite value at large N
and scales as p−1.

Since the average mean-square displacement S is related
to the spectral properties of the Laplacian matrix L, we can
understand the scaling behavior of S in terms of its eigen-
value spectrum ����. For large size N, Eq. �5� can be ex-
pressed as �12�:

S =	 ����
�

d� , �10�

from which we can easily see that the density of small �
dominates the behavior of S. For the case without cross-
links, the system reduces to a 1D ring chain, where ����
��−1/2 and ��N−2 for small �. Thus, S�
�−3/2d��N. For
the case with cross-links, following the heuristic argument in
�14�, we can consider that the ring chain is divided into sev-
eral quasilinear segments of length l, and the probability of
length l is exponentially small, e−pl. Each segment l contrib-
utes to small eigenvalues of the order of l−2. Summing over
lengths with the exponential weight, we obtain S=
 ����

� d�

�
0
N l−2e−pl

1/l2 dl= 1
p �1−e−pN�. When pN�1, S�N; while pN�1,

S�1 / p, which is exactly what our numerical results show in
Figs. 2 and 3. Although the argument above is not rigorous
and applies only when p is smaller than one, it gives us quite
good understanding of the scaling behavior of S. When p is
larger than one, the model we used is more like an Erdös-
Rényi model, which is also to be demonstrated to follow the
same scaling of the stable regime at the end of this paper.

The small-world structure we used above is well studied
�10�. Using renormalization-group method, the authors in
Ref. �10� showed that this model undergoes a transition be-
tween regular lattice and random one at intermediate charac-
teristic size Nc� p−1. In other words, the phase transition has
a critical point pc=0 in the thermodynamical limit when N
→
. For finite size N, the diameter l scales linearly with N
for Nc�N as it is in 1D ring chain while l� ln N for N
�Nc, where it exhibits “small-world” property. Our results
about unstable and stable phases are consistent with their
findings that the unstable regime corresponds to the 1D case
and the stable phase corresponds to the small-world case.

As an illustrative example, the thermodynamic stability is
further tested on real protein data. We revisit the proteins
used in Ref. �2�, which differ in functions and structures,
with a wide size scale ranging from 100 to 3600 residues. All
the structure data are downloaded from the protein data bank
�PDB� �15� and the number of all residue pairs is counted
within a customary cutoff 7.0 Å. After eliminating the con-
nectivity number of the primary structure of protein from the
counted number, we obtain the number of cross-links, Ecr,
for each protein. The mean-square displacement of C
 atoms
is characterized by B factor �16�, also called Debye-Waller or
temperature factor: Bi=8	2�qi

2� /3, where i is the index of
amino acid residue. It is experimentally measured via x-ray

FIG. 2. �Color online� �a� S versus network size N. The straight
line for p=0 indicates the diverging behavior, S�N, of the 1D ring
chain. Even small nonzero value of p can suppress the diverging
behavior of S and make it saturated to a finite value in the large size
limit. �b� For each N, S decreases as p increases. A scaling behavior
S�1 / p emerges in the large size limit. All the results indicate that
the cross-links boost the thermodynamic stability effectively.

FIG. 3. �Color online� Scaling plot of the average mean-square
displacement S in small-world networks for various size N and
probability p. All data are from Fig. 2 �13� and they collapse into
one single line very well. It shows two phases clearly: one is the
regime with slope −1, where p�1 /N, indicating the nondivergent
stable behavior S /N�Ecr

−1= �pN�−1, i.e., S�1 / p. Another one is the
horizontal regime, indicating the diverging unstable behavior, S
�N. The red vertical dashed line is used as guide for the eye to
separate the two phases.
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crystallography, and also can be download from the PDB. The
average B factor is calculated over all C
 atoms for each
protein, B=�i=1

N Bi /N. Notice that at above theoretical analy-
sis, kBT /� is set to be one for convenience, which is not
always true. The value of kBT /� varies among different pro-
teins. Thus, we use the estimated data of kBT /� �2� to obtain
the normalized average B factor, B�=B / �kBT /��. Note that
B� is analogous to S, defined in Eq. �10�. All the details of
these proteins are listed in Table I.

The thermodynamic stability is crucial in keeping the na-
tive structure of protein for right function. Moreover the
structure of protein is also found to have small-world prop-
erty �17�, i.e., l� ln N. It is intuitive for us to expect that
nature selection forces proteins to evolve into the stable
phase in Fig. 3, which implies B� /N�Ecr

−1. Figure 4�a� veri-
fies our expectation drawn from the argument of stability
analysis. In fact, we obtain a clear power-law scaling:

B�/N � Ecr
−a, a = 0.92 � 0.01, �11�

which is quite close to one. This scaling reveals the universal
behavior shared by various different proteins, regardless of

TABLE I. Information of proteins used in the present study. Size N is the number of residues. Ecr is the number of cross-links, counted
within cutoff 7 Å. B is the average B factor over all C
 atoms for each protein. The estimated kBT /� are collected in Ref. �2�. B� /N is the
normalized B factor over the size of protein.

PDB code N Ecr B kBT /� B� /N PDB code N Ecr B kBT /� B� /N

9RNT 104 303 10.9147 1.657 0.063 34 16PK 415 1472 14.3769 0.63 0.054 99

1BVC 153 469 8.331 24 0.392 0.138 91 1BU8 446 1559 19.7459 0.859 0.051 54

1G12 167 584 14.4393 0.793 0.109 03 1AC5 483 1598 24.8104 1.091 0.047 08

1AMM 174 612 0.067 93 0.003 0.130 13 1LAM 484 1737 10.9112 0.488 0.0462

1KNB 186 616 18.7711 1.104 0.091 41 1CPU 495 1659 13.5504 0.62 0.044 15

1CUS 197 671 16.6598 0.914 0.092 52 3COX 500 1792 9.2601 0.491 0.037 72

1IQQ 200 634 10.164 0.48 0.105 88 1A65 504 1724 21.3040 1.042 0.040 57

2AYH 214 744 9.9678 0.539 0.086 42 1SOM 528 1805 34.3889 1.585 0.041 09

1AE5 223 768 19.9342 0.952 0.093 90 1E3Q 534 1799 35.0785 1.577 0.041 81

1LST 239 799 20.2462 0.982 0.086 27 1CRL 534 1893 18.7736 0.969 0.036 28

1A06 279 880 52.5323 2.184 0.086 21 1AKN 547 1851 41.9999 1.737 0.0442

1NAR 289 925 13.5809 0.602 0.078 06 1CF3 581 2082 22.4561 1.154 0.033 49

1A48 298 928 16.3599 0.664 0.082 68 1EX1 602 2199 24.2479 1.193 0.033 76

1A3H 300 1076 13.4101 0.719 0.062 17 1A14 612 2198 17.9869 0.865 0.033 98

1SBP 309 1061 12.5878 0.641 0.063 55 1MZ5 622 2234 16.4778 0.75 0.035 32

1A5Z 312 1070 45.6872 2.111 0.069 37 1CB8 674 2348 28.0511 1.164 0.035 75

1A1S 313 1088 21.3477 1.068 0.063 86 1HMU 674 2341 21.8915 0.907 0.035 81

1ADS 315 993 10.7205 0.5 0.068 07 1A47 683 2350 13.5361 0.646 0.030 68

1A40 321 1153 9.720 25 0.524 0.057 79 1CDG 686 2375 23.1041 1.074 0.031 36

1A54 321 1144 11.6098 0.601 0.060 18 1DMT 696 2313 26.9702 1.204 0.032 18

1A0I 332 1094 27.2887 1.109 0.074 12 1A4G 780 2904 11.4584 0.591 0.024 86

3PTE 347 1210 8.130 32 0.366 0.064 02 1HTY 988 3276 14.0281 0.646 0.021 98

1A26 351 1117 34.2736 1.369 0.071 33 1KCW 1017 3579 44.0269 2.13 0.020 32

1BVW 360 1209 13.0188 0.652 0.055 47 1KEK 2462 8860 26.7142 1.263 0.008 59

8JDW 360 1191 23.8334 1.293 0.051 20 1B0P 2462 8936 6.083 48 0.319 0.007 75

7ODC 387 1266 19.8278 0.859 0.059 64 1K83 3490 11725 55.9118 2.03 0.007 88

1OYC 399 1378 20.4127 1.056 0.048 45 1I3Q 3542 11813 70.0899 2.435 0.008 13

1A39 410 1474 21.4742 1.113 0.047 06 1I50 3558 11799 63.2545 2.236 0.007 95

FIG. 4. �Color online� �a� Log-log plot of normalized average
B factor with various number of cross-links for real protein data.
It exhibits clearly a power-law behavior, B� /N�Ecr

−a. The dashed
line indicates the best fit of the power law, with exponent
a=−0.92�0.01. �b� The average mean-square displacement S ver-
sus the parameter Ecr /N= pr�N−1� /2−1 in Erdös-Rényi model.
The dashed line indicates the scaling.
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their sources or functions. It implies an underlying general
mechanism that nature selects proteins with thermodynamic
stability constraints.

Although protein has more complex structures with high
modularity �domains�, small-world property captures its
main feature. Thus, small world might play a key role in the
thermodynamic stability of structures and be responsible for
the scaling in the stable regime. To validate our conjecture,
we further study the thermodynamic stability in Erdös-Rényi
�ER� random network model in the following.

ER model �18� has N nodes and every pair of nodes is
connected with probability pr. The average degree �k�
= pr�N−1�. There are several phases in this model depending
on different threshold pr: when �k�= pr�N−1��3.5 �18�, the
diameter of the graph equals the diameter of the giant cluster,
and is proportional to ln N, i.e., small-world property. Thus,
it is straightforward to expect that ER model might share the
same behavior S /N�Ecr

−1. The numerical result is illustrated
in Fig. 4�b�. As we point out above, ER model has small-
world property �19� when pr�N−1��3.5. Correspondingly,
when pr�N−1� /2−1�0.75, S�N /Ecr=N / �prN�N−1� /2
−N�= �pr�N−1� /2−1�−1 as shown in Fig. 4�b�.

For convenience of comparison, we plot the data of three
cases together in Fig. 5. It clearly shows the universal scaling
S /N�Ecr

−1 in the regime where the three structures all have
small-world property, l� ln N. Moreover, we have tested
other network models �20� sharing the property l� ln N. The
results indicate that the small-world property plays the key
role in the stable regime and is responsible for the universal
scaling, regardless of the model details, which can be ex-
plained in the framework of a mean-field approach �20�.

In summary, we have studied the vibrational thermody-
namic stability of small-world structures. The average mean-
square displacement S of the structure has been expressed as
the mean of inverse eigenvalues of its Laplacian matrix L.
Therefore, the dynamic vibration property is closely related
to the static structure information. It is found that the cross-
links suppress S effectively and on the small-world network
model, there exist two phases: an unstable phase where p
�1 /N, S�N, and a stable phase where p�1 /N, S� p−1,
i.e., S /N�Ecr

−1. Further, we have tested various data from the

PDB, and found that native proteins belong to the stable phase
and share the same scaling behavior S /N�Ecr

−1. It is believed
that nature selects proteins under the constraint of thermody-
namic stability so that proteins can keep their specific native
fold structure stable for proper function. Finally, we have
studied S in ER random network model, and have validated
our conjecture that it is the small-world property that plays a
key role in the thermodynamic stability of structures and is
responsible for the universal scaling, S /N�Ecr

−1, in the stable
regime. It is also interesting to examine more complex struc-
ture effects on the thermodynamic stability problem, such as
scale-free networks �20�, hierarchical structures, networks
with community structure, etc. More realistic considerations
such as the effect of random coupling constants, anharmonic
potentials, or even quantum version of vibration dynamics
are worth further studying.

The work was supported by the NUS Faculty Research
Grant No. R-144-000-165-112/101.

APPENDIX: DERIVATION OF THE CORRELATION
MATRIX

To make this paper self-contained and readable, we
complement the detailed derivation of Eq. �2� which is ex-
pressed in terms of G in Fourier transform space. We follow
Ref. �21� by defining the Fourier transform as

Q��� =
1

2	
	

−


+


q�t�e−i�tdt , �A1�

���� =
1

2	
	

−


+


��t�e−i�tdt . �A2�

Applying Fourier transform to both sides of Eq. �1�, one
obtains

− �2MQ = − �LQ − i��Q + � . �A3�

Simple algebraic operation yields

Q = G−1�i��� , �A4�

where matrix G�i��=−�2M + i��+�L as defined in text.
The two point correlation function is

�ql�t + ��qk�t�� = 	
−


+


d�ei��t+��	
−


+


d��e−i��t�Ql���Qk
������

= 	
−


+


d�ei��t+��	
−


+


d��e−i��t������������

��G−1�i��G−1�− i����lk, �A5�

where � denotes the conjugate transpose and Q�����
=������G−1�−i���. Moreover, since

FIG. 5. �Color online� S /N versus Ecr for three different net-
works. It shows that the small-world property is responsible for the
universal scaling S /N�Ecr

−1 in the stable regime, regardless of the
model details. Note that for proteins, S=B� / �8	2�, where the factor
of three is removed since B factor is measured in three dimension.
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������������ =
1

2	
	

−


+


dte−i�t 1

2	
	

−


+


dt�ei��t����t����t���

=
kBT�

	

1

2	
	

−


+


ei���−��t =
kBT�

	
���� − �� ,

�A6�

substitute Eq. �A6� into Eq. �A5� and we have:

�ql�t + ��qk�t�� =
kBT

	
	

−


+


d�ei���G−1�i���G−1�− i���lk.

�A7�

The expression of correlation matrix Eq. �2� corresponds to
the special case �=0.
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